

Select the right relay for the right application

*	Reduction of contact erosion when switching DC loads	p.10
K	Contacts for high inrush current	p.10
0.	Safe separation of power circuits	p.11
Ð	Reliable switching of low power signals	p.11
十	Efficient switching of high voltages high currents	p.12
- å-	Switching with a pulse	p.12
ŵ	Max. life time and highest number of switching cycles	p.13
*	Blinking relays	p.13
±ste	Impulse shaping (Extending short pulses)	p.14
Ø	Energy saving with the same switching capacity	p.14
\$	Protection against aggressive environment	p.15
	Relays according to Railway standard	p.16
	(increased shock and vibration resistance)	

Reduction of contact erosion when switching DC loads

Increased contact gaps, double make contacts, and arc blow-out magnets to reduce contact erosion (burn offs).

Compared with standard contacts, the reliability can be remarkably increased when using customized contacts for switching DC loads with breakaway sparks.

Increased contact caps, double make contacts and blow out magnets are causing a longer distance for the electric arc. Electric arcs are extinguished quickly and increase significant the lifetime of the contacts.

Suitable relays for this application

Series	Туре	Base	Contacts	Gap	Extras	DC-1 rating	I
MRC	C2-G2x	:8:	፟ //	1.7 mm		1.2 A	110 V DC
	C3-G3x		<u> </u>	1.7 mm		1.2 A	110 V DC
	C3-M1x		<u>∠</u>	2x 1.7 mm ≥ 3 mm	Double make contacts; Blow out magnet	10 A	220 V DC
	C3-X1x		└╌┤-ᅻ	2x 1.7 mm ≥ 3 mm	Double make contacts	7 A	110 V DC
	C4-X2x		┟╌┼╌┼╼	2x 1.7 mm ≥ 3 mm	Double make contacts	7 A	110 V DC
	C5-G3x		<u>ነ</u>	1.7 mm		1.2 A	110 V DC
	C5-X1x	=	┟╌┤	1.7 mm ≥ 3 mm	Double make contact	7 A	110 V DC
	C5-M1x		┟┈┧	2x 1.7 mm ≥ 3 mm	Double make contacts; Blow out Mmagnet	10 A	220 V DC
	C5-M2x		┟ _┉ ╄	2x 1.7 mm	Blow out magnet	7 A	110 V DC
QRC	C7-G2x	Ħ	┟┼╤	1.5 mm		0.8 A	110 V DC
	C7-X1x	Ħ	′⊱;∕₽	2x 1.5 mm	Double make contacts	6 A	110 V DC
IRC	C10-G1x	Ē	γ¢	1.0 mm		10 A	30 V DC
	C12-G2x	Ħ	<u> /</u> /	1.0 mm		5 A	30 V DC
DIN	CMC1	DIN 14 mm	2x		Adjustable start and breaking ramps	10 A	24 V DC

Contacts for high inrush current

Tungsten contacts have a higher melting point that help resist high power peaks and protect main contacts

High power peaks during switch-on of electrical loads, for example when switching power supplies and ballasts can lead to welding of the contacts. Early make tungsten contacts resist high inrush currents and avoid contact welding.

Series	Туре	Base	Contacts	Extras	AC-1 rating	
QRC	C7-W1x	Ħ	∦ ¢	Tungsten early make contact; Inrush current 2.5 ms 500 A	10 A	250 V AC
DIN	CHI14	DIN 17.5 mm	₩ \$	W / AgSnO ₂ contact for high inrush currents up to 800 A	16 A	250 V AC
	CIM14	DIN 17.5 mm	∦ ⇔	W / AgSnO ₂ contact for high inrush currents up to 800 A	16 A	250 V AC
	RIC	DIN	ליםיל ליבויל		2063 A	400 V AC
	RAC	DIN	ליםיל ליבויל		2025 A	400 V AC
	RBC	DIN	<u> </u>		2032 A	400 V AC

0.

Safe separation of power circuits

Relays with increased contact distance of at least 3 mm allow safe separations in power circuits of high voltage currents and increase the protection degree from potentially lethal currents.

Serie	Туре	Base	Contacts	Gap	Extras	AC-1 rating	J
MRC	C3-M1x	:11:	┟ <u>┉</u> ┦ф	2x 1.7 mm ≥ 3 mm	Double make contacts; Blow out magnet	10 A	250 V AC
	C3-X1x () / / - / - ↓ - ↓ - ↓ 2x 1.7 mm ≥ 3 mm Double make c		Double make contacts	10 A	250 V AC		
	C4-X2x		<u>└-┾-</u> ┾-┾中	2x 1.7 mm ≥ 3 mm	Double make contacts	10 A	250 V AC
C5-X1x		Ħ	とよ	≥ 3 mm	Double make contacts	16 A	400 V AC
	C5-M1x	Ħ	┟┉╁┍	≥ 3 mm	Double make contacts; Blow out magnet	16 A	400 V AC
QRC	C7-X1x	Ħ	とよ	2x 1.5 mm ≥ 3 mm	Double make contacts	10 A	250 V AC

Suitable relays for this application

Reliable switching of low power signals

Twin contacts increase reliable switching by factors of 10 to 100 times. 10 µ hard gold plated contacts help to avoid contact oxidation. Together this allows reliable switching of very low level signals through the contacts.

Low level voltages in analogue circuits and signal voltages <10V/5 mA are not easily able to overcome contact resistances. Twin contacts increase contact reliability and gold contacts avoid contact oxidations and are especially suitable to switch low power signal loads.

Serie	Туре	Base	Contacts	Extras	Min. rating	
MRC	C2-T22x	:8:	' # '- # '-¢	Twin contacts, 10 μ gold plated	1 mA	5 V DC
	C3-T32x		'#'# ₽	Twin contacts, 10 μ gold plated	1 mA	5 V DC
QRC	C7-T22x	Ħ	' # '-#'-¢	Twin contacts, 10 μ gold plated	1 mA	5 V DC
	C7-H23	Ħ	┢╡	1 power & 1 signal contact 2 µ gold plated	5 mA	5 V DC
	C9-A42x	=	╠╝╋	Contacts, 10 µ gold plated	5 mA	5 V DC
IRC	C10-T13x	E	'# -⇔	Twin contacts, 3 μ gold plated	1 mA	5 V DC
	C10-GT13x	E	┢	Twin contacts, 3 μ gold plated	1 mA	5 V DC
	C12-A22x	Ħ	╠╝╋	Contacts, 3 µ gold plated	5 mA	5 V DC
	CSS-N	Ē	F	NPN Solide state	1 mA	48 V DC
	CSS-P	E	F	PNP Solide state	1 mA	48 V DC

Efficient switching of high voltages high currents

Heavy duty relays are designed to switch high currents. Due to their relatively small dimensions and lower cost, these relays are more economical then contactors. Therefore control panels can be optimized for high power switching.

Heavy duty relays save space in the panel and cost less than contactors. They can be used for switching higher currents, for example electrical heaters up to 16 A at 400 V AC.

Suitable relays for this application

Series	Туре	Base	Contacts	Gap	AC-1 rating	I
MRC	C5-A2x		╠┤┝┤		16 A	400 V AC
	C5-A3x	=	╠┟┾╎┾╴╼		16 A	400 V AC
	C5-G3x		<u> </u>	1.7 mm	16 A	400 V AC
	C5-X1x		┟╌╁╺古	> 3 mm	16 A	400 V AC
QRC	C7-A1x	Ħ	┟╡╌		16 A	250 V AC
RIC	RIC20	DIN 17.5 mm	ליביץ ליביץ		20 A	400 V AC
	RIC25	DIN 35 mm	//+++///++/		25 A	400 V DC
	RIC40	DIN 54.5 mm	<i>\\</i> \$\$		40 A	400 V AC
	RIC63	DIN 54.5 mm	<i>\\</i> \$		63 A	400 V AC
RAC	RAC20	DIN 17.5 mm	לי לי לי לי לי		20 A	400 V AC
	RAC25	DIN 34 mm	<i>\\</i> \$\\		25 A	400 V AC
RBC	RBC20	DIN 18 mm	ירייץ יריי ן		20 A	400 V AC
	RBC32	DIN 35 mm	<i>\\</i> \$		32 A	400 V AC

_°−

Switching with a pulse

Change the ON/OFF status of a latching relay (remanence relay) with a single pulse. The switching status remains stable also in the case of power failure.

The switching status of a latching relay is changed with a single input pulse although permanent connection is also possible. The contacts remain in position even after the "on" coil is de-energized. This guarantees that the relay status remains in position until such time that a control signal is applied to the "off" coil. A stepping relay provides an alternative for pulse switching and latching.

Latching relays help to save power dissipation, what is especially important when a hot environment is expected or when a high number of relays are mounted close with each other in a control cabinet.

Series	Туре	Base	Contacts	Extras	Max. contact rating	
MRC	C3-R2x		'/' /-/ → Rem.	Remanence (Latching) relay	10 A	250 V AC
	C4-R3x		'/≓'/≓'/≓-c⊐ Rem.	Remanence (Latching) relay	10 A	250 V AC
	C5-R2x	=	'/≓ '/⁴ -⇔ Rem.	Remanence (Latching) relay	10 A	400 V AC
QRC	C9-R2x	=	'/≓ '/ → Rem.	Remanence (Latching) relay	5 A	120 V AC
DIN	RBC20	DIN 18 mm	<u> /</u> ፡፡-/	Bistable installation contactor	20 A	400 V AC
DIN	RBC32	DIN 35 mm	<u> </u>	Bistable installation contactor	32 A	400 V AC

Max. life time and highest number of switching cycles

Long Life relays are relays of robust mechanical structure with 5 times longer life cycles compared to standard relays. Unlimited switching cycles are reached with solid state relays.

The Long Life Relays with a more robust design provide a 5 times longer service life. Standard relays are designed for 10 to 20 million mechanical switching cycles. For periodical switching frequencies in the second or minute range, the standard relays reach their life cycle within a few months. The long life relays are specially designed for frequent switching applications.

Serie	Туре	Base	Contacts/Outputs	Extras	Max. co	ntact rating
MRC C20	C21	:8:	╠╡┾┨╌╘	> 10 ⁸ mechanical operations	10 A	250 V AC
C30	C22	:8:	'# ' '# -₽	> 10 ⁸ mechanical operations, twin contacts	5 A	250 V AC
	C31		╠╬╬	> 10 ⁸ mechanical operations	10 A	250 V AC
	C31		╵#╵#╵# -¢	> 10 ⁸ mechanical operations, twin contacts	5 A	250 V AC
CSS	CSS-I	=	*	Solide state AC (unlimited ops.)	3 A	250 V AC
	CSS-Z	Ē	*	Solide state AC (unlimited ops.)	3 A	250 V AC
	CSS-N	Ξ	X	Solide state DC (unlimited ops.) NPN	6 A	48 V DC
	CSS-P	=	X	Solide state DC (unlimited ops.) PNP	6 A	48 V DC
CRINT	CRINT-C1x5	DIN 6.2 mm	X	Solide state DC (unlimited ops.)	2 A	24 V DC
	CRINT-C1x8	DIN 6.2 mm	*	Solide state AC (unlimited ops.)	1 A	240 V AC
DIN	CMC1	DIN 14 mm	2x	Adjustable start and breaking ramps	16 A	24 V DC
	CMC15/16	DIN 14 mm	2x	Adjustable start and breaking ramps and speed	10 A	24 V DC

Suitable relays for this application

Blinking relays

Blinking relays with integrated solid state outputs have a virtually unlimited life time independent from the switching cycles. Specially appropriate for blinking functions in intervals of seconds or minutes.

Blinking in second or minute intervals with permanent repetitions wear standard mechanical relays in a short time. A standard relay will reach the limit of its designed life time within weeks or months. Special blinking relays with integrated semi conductor contacts provide the alternative for such applications.

Series	Туре	Base	Contacts/Outputs	Extras	Max. contact rating	
CIM	CIM1	DIN 17.5 mm	' ⊭ -⇔	Time range adjusttable 0.6 s - 60 h	16 A	250 V AC
	CIM2	DIN 17.5 mm	╠╡	Time range adjusttable 0.6 s - 60 h	16 A	250 V AC
	CIM12	DIN 17.5 mm	*	Time range adjusttable 0.6 s - 60 h	2 A	250 V AC
	CIM22	DIN 17.5 mm	*	Time range adjusttable 0.6 s - 60 h	2 A	250 V AC
	CIM13	DIN 17.5 mm	¥	Time range adjusttable 0.6 s - 60 h	5 A	30 V DC
	CIM23	DIN 17.5 mm	X	Time range adjusttable 0.6 s - 60 h	5 A	30 V DC
	CIM14	DIN 17.5 mm	∦ ∕中	Time range adjusttable 0.6 s - 60 h	16 A	250 V AC

±It]-

Impulse shaping (Extending short pulses)

Pulse shaper of the series CPF extend or shorten input pulses for accurate further processing by PLC's.

PLC's or other control circuits are often not able to process fast and short pulses. The pulses are conditioned with CPF pulse formers for further processing by PLC's. Fast revolution speeds and distance measurements as well as "Namur" sensor signals are conditioned with the CPF type relays for further processing.

Suitable relays for this application

Series	Туре	Base	Contacts	Trigger and Outputs times	Max. conta	ct rating
DIN	CPF11	DIN 17.5 mm	F	Input 1 - 5 ms; Output 5 - 60 ms	2 A	32 V DC
	CIM1x	DIN 17.5 mm	╠╝	Input min. 20 ms; Output 50 ms - 60 h	16 A	250 V AC
	CIM2x	DIN 17.5 mm	╠╡	Input min. 20 ms; Output 50 ms - 60 h	16 A	250 V AC
	CIM3x	DIN 17.5 mm	'/ '中	Input min. 20 ms; Output 50 ms - 60 h	16 A	250 V AC
	СМЗ	DIN 17.5 mm	╠╬	Input min. 35 ms; Output 50 ms - 60 h	5 A	250 V AC
	CRV4	DIN 13 mm	╠╡	Input min. 35 ms; Output 50 ms - 60 h	6 A	250 V AC
	CSV4	DIN 13 mm	F	Input min. 20 ms; Output 8 ms - 10 h	1.5 A	24 V DC
CS	CS2	0	'/ -中	Input min. 50 ms; Output 50 ms - 60 h	8 A	250 V AC
	CS3	0	╠┦-ф	Input min. 50 ms; Output 50 ms - 60 h	6 A	250 V AC

Energy saving with the same switching capacity

Relays with sensitive coils have considerably less power consumption than standard relays. This allows up to 90% energy saving with practically identical switching capcity

Relays with sensitive coils have improved and more effective magnetic circuits than coils of standard relays. The result is a considerably reduced coil current compared to a standard relay but with an almost identical switching capacity per contact. This means lower power consumption and therefore more economical operating and less heat. Under some circumstances, the user can provide a smaller power supply and save costs.

Series	Туре	Base	Contacts	Sensitive coil	AC-1 contact rating	
MRC	C3-S1x		┟╡	Nominal power 250 mW	6 A	250 V AC
	C3-E2x		┢	Nominal power 500 mW	6 A	250 V AC
	C3-N3x		╠╠	Nominal power 800 mW	6 A	250 V AC
QRC	C9-E2x		╠╎	Nominal power 800 mW	5 A	250 V AC

Protection against aggressive environment

A 10 µ hard gold plating of the contacts is an effective way to protect the contacts against oxidation caused by aggressive gases.

Aggressive gases may develop in sewage plants, chemical plants, or in the steel production. Conducting failures may occur on relays with standard silver nickel contacts because of contact surface oxidation. 10 µ hard gold plated contacts are especially suitable in such environments and improve the contact reliability.

Series	Туре	Base	Contacts	Extras	AC-1 conta	ct rating
MRC	C2-A28	:8:	┟┼┼	Contacts 10 µ gold plated	10 A	250 V AC
	C2-T22	:8:	'# '#'-¢	Twin contacts, 10 μ gold plated	6 A	250 V AC
	C3-A38		┟┼┼┼┶	Contacts 10 µ gold plated	10 A	250 V AC
	C3-T32	<u></u>	╵#╵# ╵# [_] ₽	Twin contacts, 10 µ gold plated	6 A	250 V AC
	C3-S18	<u></u>	'/ 中	Contacts 10 µ gold plated	6 A	250 V AC
	C4-A48	<u></u>	╠╬╬	Contacts 10 µ gold plated	10 A	250 V AC
QRC	C7-A28	H	┢	Contacts 10 µ gold plated	10 A	250 V AC
	C7-T22	Ħ	'#' #-¢	Twin contacts, 10 µ gold plated	6 A	250 V AC
	C9-A48		╠╬╬	Contacts 10 µ gold plated	5 A	250 V AC
IRC	C10-A18		╠╡	Contacts 3 µ gold plated	10 A	250 V AC
	C10-GT13		₩ ₽	Twin contacts, 3 µ gold plated	6 A	250 V AC
	C10-T13	Ē	'#'-¢	Twin contacts, 3 µ gold plated	6 A	250 V AC
	C12-A22	H	╠╬	Contacts 3 µ gold plated	5 A	250 V AC
	C12-G22	H	<u></u> //	Twin contacts, 3 µ gold plated	5 A	250 V AC

Relays according to Railway standard (increased shock and vibration resistance)

Relays as per Railway standard EN50155/EN60077/EN61373 are more suitable for applications with shock and vibration and have a higher degree of surge protection. Many of these railway relays also comply to additional fire protection standards, have lower inflammability and develop less toxic smoke and gases in case of fire.

Relays specially developed to comply with railway standards are designed for higher vibration, shock and surge values and allow higher tolerance in the voltage supply. Some of these relays additionally comply to special fire protection standards in regard to inflammability and the development of toxic smoke and gases in fire accidents.

Although specially designed for railway applications these relays are also suitable for other industrial applications where increased product safety is required.

Series	Туре	Base	Contacts	Railway standard	Max. contact rating	
MRC	R3-N3x		┝┙┝┙┝	EN 60077-1-2/99, EN 61373/99	6 A	250 V AC
Long Life	C31	()	┝┙┾┙┝┙	EN 50155, Fire protection NF F16-101/102	10 A	250 V AC
	C32		╵#╵#╵ #└ 	EN 50155, Fire protection NF F16-101/102	6 A	250 V AC
QRC	R7-A2x	Ħ	┟┥┝┥	EN 60077-1-2/99, EN 61373/99	10 A	250 V AC
	R7-T2x	Ħ	'#'-#'-⇔	EN 60077-1-2/99, EN 61373/99	6 A	250 V AC
CIM	CIM1R	DIN 17.5 mm	┟╡	EN 50155, Fire protection NF F16-101/102	16 A	250 V AC
	CIM12R	DIN 17.5 mm	4	EN 50155, Fire protection NF F16-101/102	2 A	250 V AC
	CIM13R	DIN 17.5 mm	Σ	EN 50155, Fire protection NF F16-101/102	5 A	30 V DC
	CIM2R	DIN 17.5 mm	'/ -中	EN 50155, Fire protection NF F16-101/102	16 A	250 V AC
	CIM22R	DIN 17.5 mm	4	EN 50155, Fire protection NF F16-101/102	2 A	250 V AC
	CIM23R	DIN 17.5 mm	X	EN 50155, Fire protection NF F16-101/102	5 A	30 V DC
	CIM3R	DIN 17.5 mm	┟╡	EN 50155, Fire protection NF F16-101/102	16 A	250 V AC
	CIM32R	DIN 17.5 mm	4	EN 50155, Fire protection NF F16-101/102	2 A	250 V AC
	CIM33R	DIN 17.5 mm	X	EN 50155, Fire protection NF F16-101/102	5 A	30 V DC
RIC	RIC20	DIN 17.5 mm	<u> </u>	EN 50155	20 A	400 V AC
	RIC25	DIN 35 mm	<i>\\</i> \$\$	EN 50155	25 A	400 V AC
	RIC-AUX	DIN 8 mm	┢╫┿╺┝╫┿	EN 50155	6 A	400 V AC