${ }_{1.6}$ High Inrush Relays

Application	Types	Contacts	AC ratings	Socket
Power relay for high inrush current	C7-W1x	1/¢	$10 \mathrm{~A} / 250 \mathrm{~V}$	S7
Hum-free installation contactor	RIC20		$20 \mathrm{~A} / 400 \mathrm{~V}$	DIN
Universal time relay for high inrush currents	CIM14	'¢	16 A / 250 V	DIN
Power relay for high inrush currents	CHI14	'1阶	16 A / 250 V	DIN

OFTEN UNDERESTIMATED:
 HIGH INRUSH CURRENTS IN LIGHTING TECHNOLOGY

Lighting technology has been changing for some years now. Traditional light bulbs are rapidly being replaced with energy-efficient light sources such as fluorescent lamps and LEDs. All of these lamps have one thing in common: they require electronic control gear (ECG). The contacts on conventional relays wear out very quickly if used for triggering these devices.

Pre-devices such as relays and contactors are placed under an increased strain when switching ECGs and energy-saving lamps with integrated ECGs. This has to be taken into consideration when planning a new system. Even when refitting the lighting technology in an existing system, the new features have to be accounted for by adapting switching components to suit the new consumers. Be aware, however, that this issue affects more than just light sources. The structure of modern switching power supplies in many devices means that this problem is also found in other areas of electronics and installation. Modern devices require a low operating current but a very high inrush current, which has to be taken into account when designing switching devices.

ECG inrush processes
ECGs and switching power supplies allow for the inrush current to peak at the exact point the device is switched on. High inrush currents are created by the capacitors used in ECGs after the rectifier for smoothing out the current and as an energy store. If a capacitor is entirely discharged, a charging current, similar to an electrical short, may occur during the first micro-seconds of the inrush process.
Our example of an ECG for $2 \times 24 \mathrm{~W}$ T5 fluorescent lamps shows that peak currents of more than 22 A - measured during the phase maximum - and a half-life of 305μ s may easily occur. During normal operation, this ECG absorbs a current of merely 220 mA . The inrush current is therefore 100 times higher than the nominal current in this example. The data sheets of renowned ECG manufacturers show, however, that inrush currents as high as 60 A may occur - with a lamp output of just 100 W . In daily life, complete lighting groups are most commonly switched on together, thus cumulating the effect of the high inrush current even further.

Great demand placed on relay performance

Common relay types use silver alloys such as silver-nickel (AgNi) for their contacts. They are not designed for inrush currents that are much higher than the nominal current. The thermic loads could weld the contacts shut after just a few switching-cycles. The result: the consumer can no longer be switched off.
An arc is created at the point the contact blades of a relay near each other during the switching process. The contact bounce found in mechanical contacts increases this arc even further. This effect is primarily influenced by the level and half-life of the inrush current. The temperatures created during the process can easily exceed the melting point of the contact alloy, thus leading to the contact blades being welded together.
The information provided in the data sheets of relay and consumer manufacturers is a first point of reference when calculating the correct specifications of a relay. They often disclose the inrush currents and peak times.
Disproportionately high inrush currents create an exceptionally high risk of welding, which is the reason why the contact material must be able to meet increased demands.

Relays for high inrush currents up to 800 A

Comat developed the high power relay CHI 14 especially for inrush currents up to 800 A .
The CH 14 has a tungsten $\left(\mathrm{W} / \mathrm{AgSnO}_{2}\right)$ pre-contact with a higher melting point than ordinary silver alloys. This facilitates the switching of currents up to 800 A for $200 \mu \mathrm{~s}$ and 165 A for 20 ms . The switching during zero flow is another special feature of this high-tech product.
This significantly reduces the inrush current. The $2 \times 24 \mathrm{~W}$ T5 ECG is an impressive example: Fig. 1 shows a inrush current without zero flow switching of 22 A . Thanks to the zero flow switching at almost 3.5A, the inrush current is 85% lower in Fig. 2.
With a 16A nominal current and a DIN housing with one module width, the CHI14 is suitable for installation in distributors and upgrading existing installations. It is also ideal for use in living areas as its switching process is almost entirely noiseless.
The multi-function time relay CIM14 of similar build features an additional 10 time functions such as stepping switches and automatic light switches in hallways.
The RIC series contactors have large-surface contacts that disconnect twice. Thanks to AgSnO_{2} contacts, the RIC 40 and RIC63 types can switch currents up to 150 A for 100 ms . The RAC versions with on-off function and the RBC stepping switches are also interesting options for installation.
The movable relay C7-W10 is ideal for industrial applications. The tungsten (W/ AgSnO_{2}) pre-contact makes it possible to handle inrush currents up to 500 A for 2.5 ms .

1

Current $=$ Voltage

2

Current
Voltage

Type:	C7-W1x/ ... v Power relay for high inrush current 1 pole normally open	
Maximum contact load:	$10 \mathrm{~A} / 250 \mathrm{~V}$ AC	6 A/250 V AC5a/b
Recommended minimum contact load:	$10 \mathrm{~mA} / 10 \mathrm{~V}$	
Contacts		
Material Standard Code 0	AgNi/W	
Rated current	10 A	
Switch-on current max. (2,5 ms)	500 A	
Switching voltage max.	250 V	
AC load (Fig 1)	2,5 kVA	
DC load	see fig. 2	

Coil

Coil resistance
Pick-up voltage
Release voltage
see table; tolerance $\pm 10 \%$

Nominal power
$\leq 0,8 \times U_{N}$
$\geq 0,1 \times U_{N}$
$1,5 \mathrm{VA}(\mathrm{AC}) / 1,5 \mathrm{~W}$ (DC)

Coil table

Insulation

Contact open
Contact/coil
Insulation resistance at 500 V
Insulation, IEC 61810-1

VAC	$\boldsymbol{\Omega}$	$\mathbf{m A}$	VDC	$\boldsymbol{\Omega}$	$\mathbf{m A}$
24	153	62	12	99	121
48	611	31	24	388	61
115	$3 K 6$	13	48	1 K 5	32
230	14 K 5	6,5	110	8 K	14

Volt rms, 1 min

Specifications

Ambient temperature operation/storage
Pick-up time/bounce time
Release time/bounce time
$20 \mathrm{~ms} / \leq 3 \mathrm{~ms}$
$10 \mathrm{~ms} / \leq 1 \mathrm{~ms}$
AC: 10 Mill./DC: 20 Mill.
Mechanical life ops
DC voltage endurance at rated load
≥ 100000 switching cycles
Switching frequency at rated load
$\leq 1200 / \mathrm{h}$
Protection class
IP40
Weight
43 g
Standard types
VAC $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ 24, 48, 115 (120), 230 (240)
LED
VDC 12, 24, 48, 110
LED
Free wheeling diode
Polarity and free wheeling diode
AC/DC bridge rectifier $\mathbf{2 4} \mathrm{V}, 48 \mathrm{~V}, 60 \mathrm{~V}$
C7-W10/AC ... V
C7-W10X/AC ... V
C7-W10/DC ... v
C7-W10X/DC ... V
C7-W10DX/DC ... V
C7-W10FX/DC ... V
C7-W10BX/UC ... V
"..." Enter the voltage for full type designation

Accessories

Socket:
Optional accessories (blanking plug):

S7-M, S7-I/O, S7-L, S7-P, S7-P0
S9-NP, S9-OP

Fig. 2 AC voltage endurance

Dimensions [mm]

Technical approvals, conformities

C
Rew

Installation Contactor

RIC20

20 A, AC/DC control voltage, silent operation DIN rail mounting according to DIN 43880

Type: RIC20-xxx/ ...V
Hum-free installation contactor, 2 contacts, $2 \mathrm{NO}, 1 \mathrm{NO}-1 \mathrm{NC}, 2 \mathrm{NC}$ types available

Rated operational power
Recommended minimum contact load

4 kW / 230 V AC-1, 0.5 A / 220 V DC-1
10 mA / 24 V

Contacts

Material	AgNi		
Rated operational current	20 A		
Max. inrush current (100ms)	50 A		
Max. switching voltage	400 V		
Max. AC load AC-1, AC-7a	$4 \mathrm{~kW} / 230 \mathrm{~V}$		
AC-3	1.3 kW /230 V (NO contact only)		
Max. DC load 24 V / 220 V DC-1 (Fig. 1)	$480 \mathrm{~W} / 130 \mathrm{~W}$		
Control input $\mathbf{V}_{\mathbf{n}}=$	UC 24 V	UC 36 V	UC 230 V
Operating voltage range [V]	20.4... 26.4	30.6 ... 39.6	195... 253
Typ. pic up voltage [V]	17	25	160
Typ. release voltage [V]	7	11	70
Power consumption [W]	≤ 2.5	≤ 2.5	≤ 2.5
Inductive turn-off voltage	None	None	None
Surge immunity EN 6100-4-5	2 kV	2 kV	2 kV

Insulation

Rated insulation voltage	230 V
Rated impulse withstand voltage	4 kV
Min. clearance of open contact	3.6 mm

General Specifications

Ambient temperature

storage	$-30 \ldots 80^{\circ} \mathrm{C}$
operation, Spacer after 2 contactors side by side	$-5 \ldots 55^{\circ} \mathrm{C}$
operation, Spacer after 3 contactors side by side	$-5 \ldots 40^{\circ} \mathrm{C}$
Pick-up time	$15 \ldots 45 \mathrm{~ms}$
Release time	$20 \ldots 50 \mathrm{~ms}$
Mechanical life	$\geq 3 \times 10^{6}$ operations
AC voltage endurance at rated load AC-3, AC-7b	$\geq 3 \times 10^{5}$ operations
DC voltage endurance at rated load DC-1	10^{5} operations
Operating frequency at rated load DC-1	≤ 300 operations / h
Operating frequency at rated load AC-1	≤ 600 operations / h
Conductor cross section coil /contacts	Stranded wire $2.5 \mathrm{~mm}^{2} / 6 \mathrm{~mm}^{2}$
Max. Screw torque coil /contacts	$0.6 \mathrm{Nm} / 1.2 \mathrm{Nm}$
Ingress protection degree	IP 20
Weight	140 g

Standard types

UC (AC / DC) 50 / 60 Hz, 24, 36, 230
"..." enter the voltage for full type designation

2NO	RIC20-200/UC ...V
1NO + 1NC	RIC20-110/UC ...V
2NC	RIC20-020/UC ...V

Accessories

Sealing cover:
Spacer:

RIC-SEAL 20

RIC-DIST

Samples of lamp loads

Incandescent lamps 230 V / 100 W
Fluorescent lamps not corrected $230 \mathrm{~V} / 36 \mathrm{~W}$
Fluorescent lamps electronic ballast units 36 W

Number of lamps

20
17
15

Find more information about RIC, RAC, RBC series on pages 117-127.

[^0]

Fig. 1 DC load limit curve DC1

Dimensions [mm]

Technical approvals, conformities

C

IEC/EN 60947-4-1, VDE 0660
IEC/EN 60947-5-1
IEC/EN 61095, VDE 0637

CIM14

Time relay with NO contact for high inrush currents up to 800 A 8 time functions + stepping function, ON-OFF switch, $50 \mathrm{~ms} . . .60 \mathrm{~h}$, DIN Rail mounting according to DIN 43880

Type: CIM14/UC24-240V

Sophisticated multifunction time relay, 1 NO power contact for high inrush currents up to 800 A with zero crossing switching ($50 / 60 \mathrm{~Hz}$), 8 time functions, stepping function and service function ON/OFF, time ranges: $50 \mathrm{~ms} \ldots 60 \mathrm{~h}$, multifunction LED state indicator, suitable for any time-control application and also staircase lighting, Light-switch neon lamp current absorption on input B1, Manual switching function for maintenance, emergency, etc., 16.6 Hz power supply applications. Railway version available.

Maximum contact load
Recommended minimum contact load

16 A / 250 V AC-1 384 W DC-1 $100 \mathrm{~mA} / 12$ V

Time functions and related connection diagrams (Function diagrams: refer to page 152)
The functions are selectable by rotary switch
E-0

A	K	N	$B I$	S	$L S$
	2				
B	W	3			

LED function table:

LED	Relay	Time run
OFF	OFF	NO
Continuous ON	ON	NO
Short blinking	OFF	YES
Long blinking	ON	YES

Time data

7 partial time ranges, $t_{\text {max }}$ (rotary switch)
Fine adjustment range (rotary knob)
Time range tolerance
Repetition accuracy
Response time, power on, on A1
Min. trigger pulse on B1
Reset time B1 (AC/DC)
Voltage failure buffering (50 / 60 Hz)

Contacts

Material
Rated operational current at $40^{\circ} \mathrm{C} / 60^{\circ} \mathrm{C}$ Max. inrush current

Max. switching voltage AC-1
Max. AC load AC-1 (Fig.1)
Max. DC load DC-1 24 V

Power supply- and control input

Nominal voltage (A1, B1)
Operating voltage range
Power consumption
Frequency range
Allowed DC residual current into B1
AC Neon lamp residual current into B1
Trigger threshold voltage on B1, AC / DC
0.6, 6, $60 \mathrm{~s} / 6,60 \mathrm{~min} / 6,60 \mathrm{~h}$
$t_{\text {min }} \ldots t_{\text {max }}, 0.5 \ldots 6$
$t_{\min }:-5 \% \ldots+0 \% / t_{\max }:-0 \% \ldots+5 \%$
$\pm 0.1 \%$ or DC: $2 \mathrm{~ms} / \mathrm{AC}: 10 \mathrm{~ms}$
$\leq 45 \mathrm{~ms}$
$20 \mathrm{~ms}(\mathrm{AC} / \mathrm{DC})$
$\leq 30 \mathrm{~ms}$
$\geq 20 \mathrm{~ms}$
$\mathrm{W} / \mathrm{AgSnO}_{2}$
16 A / 13 A
165 A / 20 ms
800 A / $200 \mu \mathrm{~s}$
250 V
4 kVA
384 W

Insulation

Test voltage open contact	1 kV rms 1 minute
Test voltage between contacts and control input	2.5 kVrms 1 minute

General Specifications

Ambient temperature storage /operation
Mechanical life of contact
Conductor cross section
Ingress protection degree
Max. Screw torque
Housing material / weight

UC 24-240 V (UC = AC / DC)
16.8 ... 250 V
1.2 VA / 0.43 W
$16 \ldots 60 \mathrm{~Hz}$
$\leq 0.5 \mathrm{~mA}$
$\leq 10 \mathrm{~mA}$
15 / 17 V
$-40 \ldots 85^{\circ} \mathrm{C} /-40 \ldots 6{ }^{\circ} \mathrm{C}$
5×10^{6} operations
Stranded wire $2.5 \mathrm{~mm}^{2}, 2 \times 1.5 \mathrm{~mm}^{2}$
IP 20
0.4 Nm

Lexan / 70 g

Standard types

UC (AC/DC) $15 . . .60 \mathrm{~Hz}$

WORLD OF RELAYS

Connection diagram

Fig. 1 AC voltage endurance

Fig. 2 DC load limit curve

Dimensions [mm]

Technical approvals, conformities

CHI14

Power relay for high inrush currents up to 800 A

 DIN Rail mounting according to DIN 43880WORLD OF RELAYS

Type: CHI14/UC24-240V

The CHI14 is a power relay for all applications effecting high inrush currents up to 800 A such as electronic control gears of energy saving lamps, power supplies of the latest LED lights and switching supplies of industrial components. These loads show an inrush current up to 250 times of their nominal current.
The CHI14 is equipped with a low noise operating NO contact with a nominal current up to 16 A and complies with the applicable DIN standards 43880 with installation dimension of 17.5 mm (1 module width).

Maximum contact load	$\mathbf{1 6 ~ A / 2 5 0 ~ V ~ A C - 1 ~ 3 8 4 ~ W ~ D C - 1 ~}$
Recommended minimum contact load	$\mathbf{1 0 0 ~ m A / 1 2 ~ V}$

Power supply- and control input

Nominal voltage (A1, B1)
UC 24-240 V (UC = AC / DC)
Operating voltage range
16.8 ... 250 V

Power consumption
Frequency range
1.2 VA / 0.43 W
$16 \ldots 60 \mathrm{~Hz}$

Insulation

Test voltage open contact
Test voltage between contacts and control input
1 kV rms 1 minute
2.5 kVrms 1 minute

General Specifications

Ambient temperature storage /operation
Mechanical life of contact
Conductor cross section
Ingress protection degree
Max. Screw torque
Housing material / weight

$$
-40 \ldots 85^{\circ} \mathrm{C} /-40 \ldots 60^{\circ} \mathrm{C}
$$

5×10^{6} operations
Stranded wire $2.5 \mathrm{~mm}^{2}, 2 \times 1.5 \mathrm{~mm}^{2}$
IP 20
0.4 Nm

Lexan / 70 g

Standard types

UC (AC/DC) $15 . . .60 \mathrm{~Hz}$

CHI14/UC24-240V

Connection diagram

Fig. 1 AC voltage endurance

Fig. 2 DC load limit curve

Dimensions [mm]

Technical approvals, conformities

EN 50155, EN 60730
品いs $C \in$

WORLD OF RELAYS

Notes

[^0]: Mounting information
 If multiple contactors are mounted side by side, spacers (RIC DIST) have to be inserted for the purpose of heat dissipation.
 Example: Ambient temperature up to $40^{\circ} \mathrm{C}$: 1 spacer after 3 RIC // $40 \ldots .5^{\circ} \mathrm{C}$: 1 spacer after 2 RIC.

