

1.5 Solid State Relays

Application	Types	Pins	Contacts	AC ratings	DC ratings	Socket
CSS Series						
AC Solid state relay, Instantaneous switching	CSS-I		中	3 A / 250 V		S10
AC Solid state relay synch. to zero crossing	CSS-Z		4	3 A / 250 V		S10
NPN Solid state relay	CSS-N		Σ		6 A / 48 V	S10
PNP Solid state relay	CSS-P		Σ		6 A / 48 V	S10
CRINT Series						
DC solid state switch	CRINT-C1x5		Σ		2 A / 24 V	
AC solid state switch	CRINT-C1x8		추	1 A / 240 V		

IRC series

CSS-I

Туре

Output

Operating range Minimum contact load

Control circuit

Output circuit

Inrush current

l²t value

Residual current

Specifications

Pick-up time

Release time

Weight

Ambient temperature operation/storage

Input voltage range Input current

Max. output current

Min. output current

Output voltage range

4-pin, Interface solid state relay, 1-pole, plug-in faston

CSS-I

35 mA

10 mA

3 A

35 mA

1 mA

210 A²s

0.06 ms

0.06 ms

28 g

5 ... 48 VDC

Instantaneous

24...250 VAC

150 A/10 ms

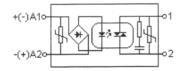
-40 ... 70 °C /-40 ... 85 °C

Solid state relay

Instantaneous

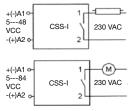
1 N/O contact

3 A, 24 ... 250 VAC, 50/60 Hz


For switching resistive and inductive AC loads

CSS-I

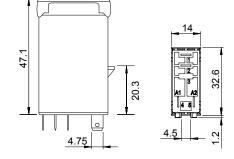
Fig. 1 CSS-I diagram


Tab. 2 AC derating curve

Dimensions [mm]

Applications

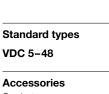
It is specially suitable to switch inductive loads up to 3A/250 VAC.


For switching loads with a high inrush or overcurrent as transformers, motors or fluorescents, the maximum output current will limit to 2 A.

Socket:

CSS-I12X/DC5-48V

S10, S10-M, S10-P



30 40 Temperature [°C] 50 60

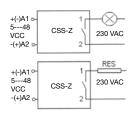
Technical approvals, conformities

CE

Current [A]

92 | 15/16

CSS-Z


4-pin, Interface solid state relay, 1-pole, plug-in faston

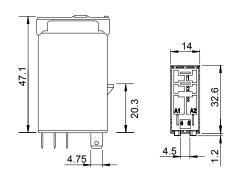
Туре	CSS-Z Solid state relay For switching resistive lamps and AC loads Synchronized to zero crossing	J.
Output	1 N/O contact	-
Operating range	3 A, 24 250 VAC, 50/60 Hz	
Minimum contact load	35 mA	5X
Control parameters		D-AI
Input voltage range	5 48 VDC	- 50 CS
Input current	10 mA	000
Output	Synchronized zero	
Max. output current	3 A	
Min. output current	35 mA	
Output voltage range	24 250 VAC	
Inrush current	150 A/10 ms	
Residual current	1 mA	
l ² t value	210 A ² s	Fig. 1 CSS-Z diagram
Specifications		_
Ambient temperature operation/storage	-4070 °C /-40 85 °C	+(-)A10
Pick-up time	10 ms	
Release time	10 ms	PYLLEIP
Weight	28 g	-(+)A20

Applications

Switches ohmic AC loads up to 3 A/250 VAC in the zero-point of the tension and avoids any overcurrent peak in the connection.

Suitable for switching resistors, incandescent lamps, signalling equipment, etc. Not suitable for inductive loads

Standard types

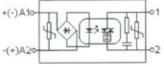

VDC 5-48

Accessories

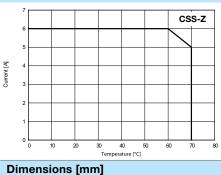
Socket:

CSS-Z12X/DC5-48V

S10, S10-M, S10-P



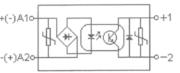
Technical approvals, conformities


CE

Tab. 2 AC derating curve

IRC series

CSS-N


4-pin, Interface solid state relay, 1-pole, plug-in faston

Туре	CSS-N								
	NPN solid state relay								
	Terminal commun 2 negative (S10 socket)								
Output	1 N/O contact								
Operating range	6 A, 5 48 VDC								
Minimum contact load	1 mA								
Control parameters									
Input voltage range	5 48 VDC								
Input current	4 mA								
Output									
Туре	NPN								
Max. output current	6 A								
Output voltage range	5 48 VDC								
Switch-on current max.	40 A / 10 ms								
Max. voltage drop	≤ 0,14 VDC								
Residual current	0,1 mA								
Specifications									
Ambient temperature operation/storage	-40 70 °C/-40 85 °C								
Test voltage between input/output	4 kV rms/1 min.								
Turn-on delay	0,06 ms								
Release delay	0,06 ms								
Weight	28 g								

Fig. 1 CSS-N diagram

Tab. 2 DC derating curve

Current [A]

0

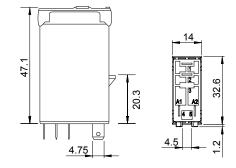

Dimensions [mm]

Negative common

For switching heating elements, electro valves, motors, PLC input/output signals, solenoids, incandescent and fluorescent lamps, etc. (up to 48 VDC).

Inductive loads must be shunted with an antiparallel diode.

Standard types


VDC	5-48
100	3-40

Accessories

Socket:

CSS-N13X/DC5-48V

S10, S10-M, S10-P

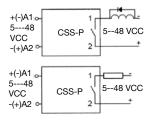
30 40 Temperature [°C]

50 60 70

Technical approvals, conformities

CE

CSS-P


4-pin, Interface solid state relay, 1-pole, plug-in faston

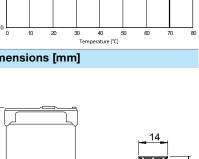
Туре	CSS-P
	PNP solid state relay
	Terminal commun 2 positive (S10 socket)
Output	1 N/O contact
Operating range	6 A, 5 48 VDC
Minimum contact load	1 mA
Control parameters	
Input voltage range	5 48 VDC
Input current	4 mA
Output	
Туре	PNP
Max. output current	6 A
Output voltage range	5 48 VDC
Max. switch-on current	40 A / 10 ms
Max. voltage drop	0,14 VDC
Residual current	0,1 mA
Specifications	
Ambient temperature operation/storage	-4070 °C /-40 85 °C
Turn-on delay	0,06 ms
Release delay	0,06 ms
Weight	28 g

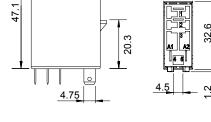
For switching heating elements, electro valves, motors, PLC input/output signals, solenoids, incandescent and fluorescent lamps, etc. (up to 48 VDC).

Inductive loads must be shunted with an antiparallel diode.

Standard types

VDC 5-48


Accessories

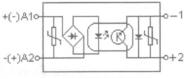

es

Socket:

CSS-P13X/DC5-48V

S10, S10-M, S10-P

Technical approvals, conformities


CE

RELECC

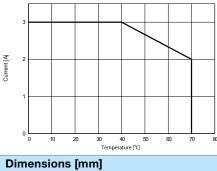


Fig. 1 CSS-P diagram

Tab. 2 DC derating curve

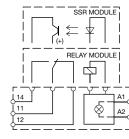
Positive common

CRINT 1x5 series

Solid state interface module with mechanical NO output contact

DIN Rail mounting according to DIN 43 880

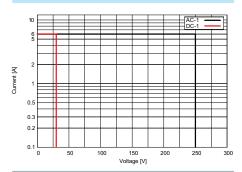
Types: CRINT-C115, CRINT-C125 / ...V


For PLC's and process control. DC solid state switch, type NO. For fast and high frequent switching. With screw terminals (CRINT-S11) or cage clamp terminals (CRINT-S12).

Max. contact load	2 A, 24 V DC-1									
Contact										
Туре	1 NO (Solid state DC)									
Material	MOSFET									
Switching current _{TH}	2 A 24 V DC									
Recommended minimal load	20 mA / 5 V									
Peak inrush current	48 A/10 ms									
Coil										
Operation voltage AC 50/60 Hz / DC	0									
Nominal power DC/AC	160 / — mW									
Insulation										
Test voltage I / O		2.5 kVrms 1 minute								
Pollution degree	3									
Over voltage category	U									
Open contact	1000 Vrms dielectric st	rength 1 min								
Standard		EN61810-5	0							
General Specifications										
Ambient temperature: operation / storage		-30 +70 °C / -40	+85 °C							
Typical response time $@V_n$		1 ms								
Typical release time $@V_n$		1 ms								
Cond. cross section screw terminal		$2.5 \mathrm{mm}^2$								
Cond. cross section spring cage		$0.75 \dots 2.5 \text{ mm}^2$								
Ingress protection		IP 20								
Mounting position		any								
Housing material		Polyamide PA6								
Order information		110401								
Screw terminal: CRINT-C115/UCV		UC12V								
		UC24V								
		UC48V								
Cage clamp terminal: CRINT-C125/UC.	V	UC60V								
		UC110-125V								
"" enter the voltage for full type designati	on	UC220-240V								
Accessories										
Jumper link (5 pcs):	blue:	CRINT-BR20-BU/5								
	red:	CRINT-BR20-RD/5								
	black:	CRINT-BR20-BK/5								
Label plate (64 pcs):		CRINT-LAB/64								
Spacer (5 pcs):	CRINT-SEP/5									
Replacement relays:		D 0 (0) (
CRINT-R15/DCV		DC12V								
"" enter the voltage for full type designati	on	DC24V								
"		DC48V								
		DC60V*								
*60V Relay used for all sockets with										

Connection diagram

Relay - NO / Solid-state DC - NO / Solid-state AC


Relay - AgSnO2 - AgSnO2 + 3μ Au

Socket -Screw terminal -Cage clamp terminal

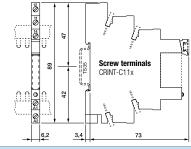

Fig.1 AC voltage endurance

Fig. 2 DC load limit curve

Dimensions [mm]

Technical approvals, conformities

96 | 15/16

a nominal voltage higher or equal 60V

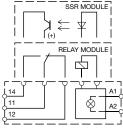
CRINT 1x8 series

Solid state interface module with mechanical NO output contact

DIN Rail mounting according to DIN 43 880

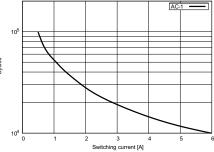
Types: CRINT-C118, CRINT-C128 / ...V

For PLC's and process control.

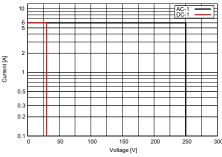

AC output interface zero synchronous switching NO for resistive or similar load. (No transformator rec.) With screw terminals (CRINT-S11) or cage clamp terminals (CRINT-S12).

Max. contact load		1 A, 240 V AC-1							
Contact									
Туре		1 NO (Solid state AC)							
Material		TRIAC							
Switching current _{TH}		1 A 240 V AC							
Recommended minimal load		22 mA / 12 V							
Peak inrush current		80 A/10 ms							
Coil									
Operation voltage AC 50/60 Hz / DC		0.8 1.25 U _N							
Nominal power DC/AC		150 / — mW							
Insulation									
Test voltage I / O		2.5 kVrms 1 minute							
Pollution degree		3							
Over voltage category									
Open contact		1000 Vrms dielectric st	trength 1 min						
Standard		EN61810-5	U						
General Specifications									
Ambient temperature: operation / storag	е	-30 +70 °C / -40	+85 °C						
Typical response time @ V _n		1 ms							
Typical release time @ V_n		1 ms							
Cond. cross section screw terminal		2.5 mm ²							
Cond. cross section spring cage		0.75 2.5 mm ²							
Ingress protection		IP 20							
Mounting position		any							
Housing material		Polyamide PA6							
Order information									
Screw terminal: CRINT-C118/UCV		UC12V							
		UC24V							
		UC48V							
Cage clamp terminal: CRINT-C128/UC	V	UC60V							
		UC110-125V							
" …" enter the voltage for full type designa	ition	UC220-240V							
Accessories									
Jumper link (5 pcs):	blue:	CRINT-BR20-BU/5							
	red:	CRINT-BR20-RD/5							
	black:	CRINT-BR20-BK/5							
Label plate (64 pcs):		CRINT-LAB/64							
Spacer (5 pcs):		CRINT-SEP/5							
Replacement relays: CRINT-R18/DCV		DC12V							
	tion	DC24V							
" onter the voltage for full type deciges		DC60V*							
" …" enter the voltage for full type designa									
"," enter the voltage for full type designa *60V Relay used for all sockets with									

Connection diagram


Relay - NO / Solid-state DC - NO / Solid-state AC Relays 1.5

1


Relay
- AgSnO2
- AgSnO2 + 3µ Au

Socket -Screw terminal -Cage clamp terminal

Fig.1 AC voltage endurance

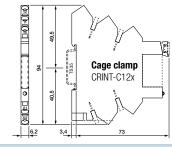


Fig. 2 DC load limit curve

Dimensions [mm]

5.3

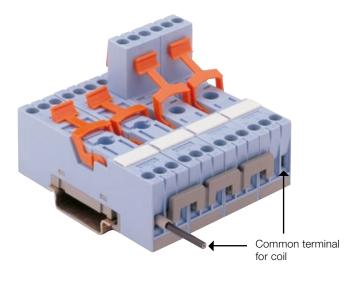
Technical approvals, conformities

51) "*

EHC

IRC – Interface-Applications

In combination with I/O sockets and the plug-in jumpers, the IRC relay series permits low-cost, clearly arranged and reliable realisation of interface circuits for the input and output ends of PLC and control systems.


S10-M and S12 sockets with one and two contacts, with inputs in series and identical arrangement of the contacts.


Identical order of coil and contacts on both sockets.

Coil terminal at level 1: (A2, A2, A1)

Power terminals at level 1: (12, 11, 14)

Power terminals at level 2: (22, 21, 24) General

All plug-in jumpers are insulated. The plug-in jumpers at the drive end (coil) can be split manually to the required length, thus enabling the creation of any required interface groups.

The jumpers are available in the colours grey, blue and red. .

Options:

Colours used by RELECO in the relays' test buttons:

- Blue for DC circuits
- Red for AC circuits

V40 and V10 plug-in jumpers for the power end

IRC – Interface Applications

Total interconnection, bridge bars for coil and power lines

V40, V10

Power bridge bars for sockets S10-M and S12

V40 bridges join four similar points in four aside adjacent sockets. They can join up either among themselves or to V10 units, to bridge an unlimited number of sockets S10-M and S12 in any combination.

V10 bridges are units to connect a single socket to the next one, so you bridge less or more than 4 sockets.

Made of copper with a current capacity of 40 A.

B20

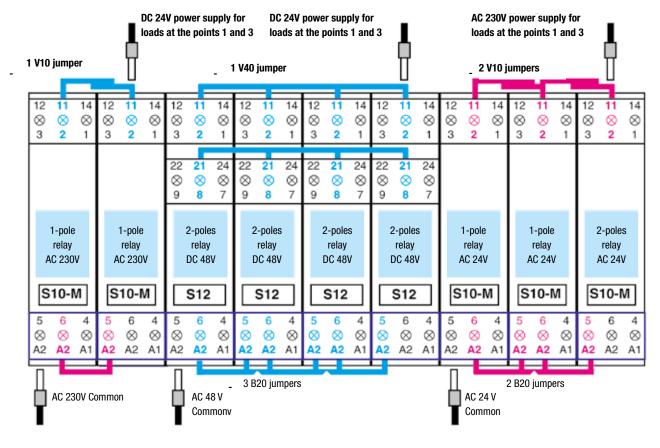
Coil bridge bars for sockets S10-M and S12

B20 bridges points A2, internally connected, of every aside adjacent socket S10-M or S12.

Each element connects point 6 of the first socket to point 5 of the next one, always leaving free the point 5 of the first socket and the point 6 of the last one, to connect the common polarity cable.

Jumper connection on S1O-M and S12 sockets

The S10-M and S12 sockets and the new connection jumpers B20, V10 and V40 enable easy and fast wiring of rows of relays. The jumpers can be used in a mixed configuration of S10-M and S12 sockets.


Different jumper colours allow clear identification. This results in fewer errors, lower assembly costs and easier inspection and maintenance work. Available in grey (standard), red (AC) and blue (DC), in conformity with the colour coding used by RELECO for test buttons for relay identification.

Attention needs to be paid only to the total current. At higher currents and also for safety reasons, a current supply at the start and end of a jumpered connection is recommended.

V40 plug-in jumpers for the power end

Contacts can be linked to the power ends with the aid of these jumpers. Normally, these are the changeover contacts, terminal 11 or 21. The jumpers can also be used to jumper NC or NO plug-in terminals. V40 jumpers link four identical contacts of four neighbouring sockets. They can either be linked to one another or to V10 jumpers to jumper a number of sockets in any combination. V10 plug-in jumpers for the power end

V10 jumpers can be used to link individual sockets to one another in groups. A combination of V40 and V10 jumpers is possible, depending on the number of sockets.

B20 plug-in jumpers for the control endThe sockets S10-M and S12 are accessible via the plug-in terminals 5 and 6 for A2 (internal connection). Each element links terminal 6 of the first socket to 5 of the next socket, and 5 of the first socket and 6 of the last socket are always left free to connect the cable. The jumper B20 consists of four coherent parts, which can be separated, however.

IRC series/CSS Semiconductor relays as an interface to PLC and control systems

Input

Application

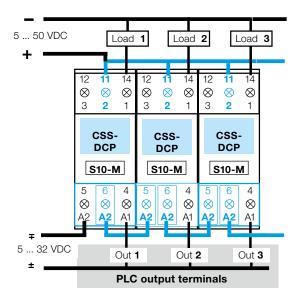
The CSS semiconductor switches have a useful life that is practically unlimited in terms of switching cycles. They operate without bounce and permit a high switching frequency

Drive

All versions feature an electrically isolated input for 5 to 32 V DC. The inputs are characterised by a minimum delay with a simultaneously high interference immunity.

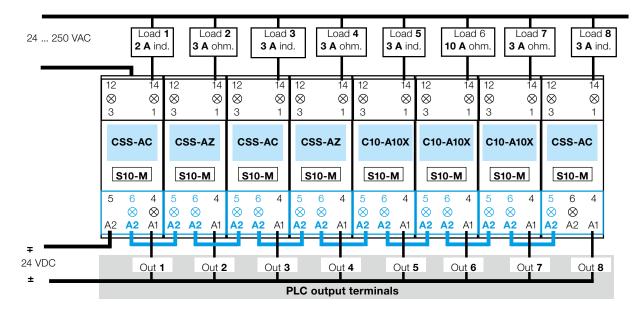
DC semiconductor switches

There are two versions with identical performance data.


The CSS-DCN version has the common negative terminal 2, and the load is connected to terminal 1. The CSS-DCP has the common positive terminal at terminal 2. The load is connected to terminal 1. This corresponds to an NPN or PNP switch.

AC switches

The CSS-AZ version switches synchronously, i.e. it switches during the passage through zero. The CSS-AC version switches asynchronously, i.e. the semiconductor switch switches through, independently of the phase, at the moment of detected triggering.


DC applications with mixed components

DC applications with mixed components

	PLC input terminals														
5 50 VDC	Input 1	Input 2	Input 3												
+		4 12 11 14 ⊗ ⊗ ⊗ ⊗ 1 3 2 1													
	CSS- DCP S10-M	C10-T13X	CSS- DCP S10-M												
		$\begin{array}{cccccc} 4 & 5 & 6 & 4 \\ \otimes & \otimes & \otimes & \otimes \\ 1 & A2 & A2 & A1 \\ \end{array}$	$\otimes \otimes \otimes$												
24 VDC	PNP-Senso	r Switch	PNP-SEI	NSOR											

AC applications with mixed components

Notes

		 	 				 	 			 	 	 	 	_				 		
			 					 			 	 		 	_				 		
		 	 				 	 			 	 	 	 	_				 		
		 						 	 		 				_				 		
																			\neg		
																-			-+		
			 											 	_				 		
																				-	
														 		-					
								 							_				 		
		 	 				 	 	 		 	 	 	 	_	-			 		
																			\neg		
	 													 		-			 		
					+														\neg	-	
														 	_	-			-+		
					-											-	-		-	-	
	 										 			 	_	-			-+		
	 				\rightarrow											-			\rightarrow		
											 			 	_	-			-+		
-					-	_								 	_	-	-		-		
																			\rightarrow		
														 		-			+	-+	
																			T		